
i-scream The future is bright; the future is blue.

The i-scream Project
University of Kent at Canterbury

http://www.i-scream.org.uk

Maintenance Documentation

i-scream WinHost
WinHost is a host application for use with the i-scream Distributed Central Monitoring System.
This document provides an overview of how WinHost works and how you may alter it to suit

your requirements.

Revision History

24/03/01 Initial creation
Committed by: pjm2 Verified by:

Date:

Committed by: Verified by:
Date:

Committed by: Verified by:
Date:

Committed by: Verified by:
Date:

Committed by: Verified by:
Date:

i-scream WinHost

1

Introduction .. 2
Overview of what the WinHost does .. 2
Supported Platforms... 2

Using WinHost ... 3
Understanding what WinHost does.. 3
Required development files ... 3
Required runtime files .. 3
Overview of operation .. 4

Startup checks.. 5
Normal running... 5

The i-scream Project

2

Introduction
WinHost is a host application for use with the i-scream Distributed Central Monitoring System.
It is designed to be easy to alter so that those with even a limited knowledge of Visual Basic
(or, indeed, any similar language) should be able to change it to suit any specific
requirements. Visual Basic was used in order to provide a simple to alter host, and also due
to the short amount of time we had to develop a Windows host.

Overview of what the WinHost does
The WinHost, like any i-scream host, is an application that harvests data from the machine it
is running on. It then sends this data to a central server for processing.

Supported Platforms
The WinHost is designed to perform on Microsoft Windows NT or Windows 2000 and is
primarily intended to be used for server monitoring.

i-scream WinHost

3

Using WinHost
WinHost is very simple to install and use. Please check the separate usage documentation
for more details.

Understanding what WinHost does
WinHost is written in Visual Basic 6, and those who know this language should be able to
understand how and what it does simply by looking at the source. However, for those who
are not so sure, here is an overview of the basic architecture of the program.

Required development files
CnetWksta.cls A Visual Basic class by Karl E. Peterson that is used to obtain the

number of users logged on to the machine.
CupTime.cls A Visual Basic class used to interface with pdh.dll. This is used to

safely obtain uptime on a machine that has been up for more than 47
days.

Imports.bas Declares our API calls to kernel32. These are used to obtain the
majority of system information for the WinHost.

Nettest.frm Visual Basic 6 Form file. This determines the layout of the WinHost,
the imported ActiveX controls and the operation of the WihHost.

Nettest.frx Visual Basic 6 Binary FRX.
Nettest.vbp Visual Basic 6 Project file.
Nettest.vbw Visual Basic 6 Window file.

Required runtime files
winhost.exe The WinHost executable.

mswinsck.ocx Microsoft WinSock ActiveX control.
systray.ocx Microsoft System Tray ActiveX control.

pdh.dll Dynamic link library used to obtain true uptime and other CupTime
class features.

winhost.ini The configuration file that tells the WinHost which filter manager to
obtain further configuration from. If this file is not present, the
WinHost will exit with a warning.

The Visual Basic 6 runtime engine will also need to be
present on the server. This is standard on Windows
2000.

The i-scream Project

4

Design Environment
WinHost in the Visual Basic IDE

The WinHost form layout has been designed within the Visual Basic IDE. Note that the form
includes 4 controls that are hidden from the end user: -

1. ActiveX system tray OCX control.
2. A Visual Basic Timer control.
3. A Winsock control for handling all TCP communications from the WinHost.
4. A Winsock control for sending UDP packets from the WinHost.

i-scream WinHost

5

Overview of operation

Startup checks
When a WinHost is started, it first checks to see if there is already another WinHost running.
If there is, the user is notified of this and the WinHost exits.

The CUpTime class is initialised on startup which enables it to be used to obtain the true
uptime of the system later on.

Many of the API calls are based on the NT architecture; thus, the WinHost will not be able to
perform on Windows 9x machines. If a Windows 9x machine is detected, then the WinHos
will exit with an error message.

The machine name and port number of the filter manager are read from winhost.ini. This file
may be located in either the same folder as the winhost.exe executable, or in the
windows\system32 folder.

The WinHost then proceeds to call the Reconfigure_Click function to connect to the filter
manager.

Finally, the program icon is installed to the Windows system tray.

Normal running

Configuration on demand
The WinHost uses the same Winsock control to perform both configuration with the filter
manager, and subsequent communications with filters. The user may instruct the WinHost to
reconfigure with the filter manager at any moment, so it is important to ensure that both
communications cannot happen at the same time. This is handled by the Reconfigure_Click
function.

Communication with the filter manager or filter is started by calling the TCPSock_Connect
function. This function is then starts off the configuration process if we are connecting to a
filter manager, or starts a heartbeat with a filter.

Periodic Events
The connection with the filter manager is used to obtain the configuration for the WinHost.
Two of these configuration values are UDPUpdateTime and TCPUpdateTime. These specify
the number of seconds between each UDP packet being sent to a filter and the number of
seconds between each TCP heartbeat with a filter, respectively.

The timing of these two independent events is triggered by the use of the Timer control on the
form.

The Timer resolution is 1000 milliseconds and is responsible for decreasing the values visible
to the user for next UDP packet and next heartbeat times.

If the Timer fires when it is time to perform a heartbeat, it does this by ensuring the TCP
Winsock control is closed, and then connects to the filter using: -

TCPSock.Connect filterHostname, filterTCPPort

The i-scream Project

6

If the Timer fires when it is time to send a UDP packet to the filter, it proceeds to generate the
contents of that packet before sending it.

TCP connections

Configuration
The TCP connection used to configure the WinHost with a filter manager uses the protocol
defined at: -

http://www.i-scream.org.uk/cgi-bin/docs.cgi?doc=specification/protocols.txt

All bytes returned to the WinHost are handled by the TCPSock_DataArrival function. In the
event of a configuration connection, this function will proceed to obtain the WinHost’s
configuration from the filter manager.

In the event of an error occurring, the WinHost will close the connection and report the error in
the text area.

Heartbeats
The TCP connection used during heartbeats with filters follows the protocol defined at: -

http://www.i-scream.org.uk/cgi-bin/docs.cgi?doc=specification/protocols.txt

Note that if the “OK” response is not received when the WinHost sends its last modified time,
the WinHost will reconfigure with the filter manager.

UDP Sending

Building the contents of packets
When a UDP packet is to be sent, the WinHost first begins by building the contents of the
packet in a string named xml.

The following values are sent within the XML structure: -

seqNo
Each packet sent must contain a sequence number. This is incremented each time the
WinHost sends a UDP packet. This number starts from 1. It is important to note that the
server will reject packets that do not contain a sequence number.

machineName
This is the fully qualified domain name of the machine on which the WinHost is running. The
value of this is obtained from the filter manager during configuration in order to ensure that all
hosts send their machine name in the same style. All packets must contain their machine
name.

packetDate
All packets must contain a timestamp. This is formatted as the number of seconds since the
epoch. The Date2Num() function in nettest.frm is used to provide this value.

i-scream WinHost

7

LocalIP
All packets must contain the I.P. address of the machine on which WinHost is running. This
is obtained from the TCPSock control that is used to configure the WinHost, so it is likely to
provide the correct I.P. address on machines that have more than one network interface card
installed.

netbiosName
Windows machines may be more easily identified by their NetBIOS names. The TCPSock is
used to provide the NetBIOS name, however, it is not essential to include this in packets.

osName
The value of osName is found by calling the GetVersion function (defined as part of the
kernel32 API). This returns a string representing the name of the operation system being
used.

osVersionMajor and osVersionMinor
These are obtained from the user type OSVERSIONINFO defined in Imports.bas. These are
concatenated in the packet to form a complete version number, for example first versions of
Windows 2000 will return 5 and 0 respectively, which will be sent as “5.0” in the packet.

osBuild
This is the internal build version of the operating system. This is also obtained from the user
type OSVERSIONINFO.

processorType
This is the type of processor that the platform is using. This is obtained by examining the
number returned from sysinfo.dwProcessorType.

uptime
This is the uptime of the machine. This must be sent as an integer representing the number
of seconds that the operating system has been running. The CupTime class is used to
provide this value, as the normal API call to do this wraps after approximately 47 days uptime.

userCount
This specifies the number of users logged on to the machine. We obtain this using the wksta
object.

percent_idle
This specifies the percentage of idle CPU time on the machine. This is obtained from the
CupTime class.

cpu_time
This specifies the percentage of user CPU time on the machine. This is obtained from the
CupTime class.

memTotal
The total amount of physical memory available to the machine. This value is sent in the
packet in megabytes.

memFree
The amount of unused physical memory available to the machine. This value is sent in the
packet in megabytes.

The i-scream Project

8

swapTotal
The total amount of swap space available to the machine. This value is sent in the packet in
megabytes.

swapFree
The amount of free swap space available to the machine. This value is sent in the packet in
megabytes.

Sending the UDP packet
Once the contents of the XML string have been built, this string is printed to the text area so
that the user may view the data being sent. This helps to assure users that we are not
collecting any sensitive data. The contents of the XML string are then sent to the filter
address (obtained by configuring with the filter manager) in a single UDP packet. It is
important to send the whole string in a single packet, as the i-scream monitoring system will
reject any packet if the whole packet does not contain valid XML.

	Introduction
	Overview of what the WinHost does
	Supported Platforms

	Using WinHost
	Understanding what WinHost does
	Required development files
	Required runtime files
	The Visual Basic 6 runtime engine will also need to be present on the server. This is standard on Windows 2000.�Design Environment
	Startup checks
	Normal running
	Configuration on demand
	Periodic Events

	TCP connections
	Configuration
	Heartbeats

	UDP Sending
	Building the contents of packets
	seqNo
	machineName
	packetDate
	LocalIP
	netbiosName
	osName
	osVersionMajor and osVersionMinor
	osBuild
	processorType
	uptime
	userCount
	percent_idle
	cpu_time
	memTotal
	memFree
	swapTotal
	swapFree

	Sending the UDP packet

