
i-scream The future is bright; the future is blue.

The i-scream Project
University of Kent at Canterbury

http://www.i-scream.org.uk

Protocol Specifications

Server/Host/Client Protocols
This document details the protocols that the i-scream server uses to talk to hosts, which are

remote applications feeding data in, and remote clients, which are reading the data as it flows
through the system.

Revision History

24/03/01 Initial creation – converted from an online format.
Committed by: ajm4 Verified by: pjm2

Date: 27/03/01

Committed by: Verified by:
Date:

Committed by: Verified by:
Date:

Committed by: Verified by:
Date:

Committed by: Verified by:
Date:

Server/Host/Client Protocols

1

Introduction .. 2
Conventions ... 3
Host Connection Protocol .. 3
Host Heartbeat Protocol... 5
Host Data Protocol ... 6
Client Control Protocol ... 6
Client Data Protocol ... 9

The i-scream Project

2

Introduction
This document details the various custom protocols that are in use throughout the i-scream
system. These protocols are used to negotiate with the various components in the i-scream
system and obtain configuration and status information. These protocols are not used to
transmit i-scream data, but are often to negotiate a data link. The actual i-scream data
packets that are sent by the various i-scream components contain XML formatted data. For
information on the format of this data see the XML via UDP specification document which is
also available online at:

http://www.i-scream.org.uk/cgiin/docs.cgi?doc=specification/xml_via_udp.txt

http://www.i-scream.org.uk/cgi-bin/docs.cgi?doc=specification/xml_via_udp.txt

Server/Host/Client Protocols

3

Conventions
All protocols in this document assume a valid connection of the appropriate type has been
made, and that data streams are already available. All strings should, and will be, terminated
with a \n (newline character) to indicate the end of the message. All messages are sent as
ASCII Strings.

Fixed protocol messages will appear in [] brackets, if there is a variety of options they will be
separated with the | character. For example:

[OK|ERROR]

Indicates that the message "OK" OR the message "ERROR" will be sent depending on the
result of the last action.

Data messages will appear in {} brackets, where the name in the brackets indicates the type
(as in kind, not data type) of data that will be returned. For example:

{lastmodified}

Indicates that data for use as 'last modified' will be returned.

If [ERROR] is sent back at any time, this indicates that all communication is over. EXCEPT
where otherwise specified!

Host Connection Protocol
The initial connection of a host to the i-scream server is through the FilterManager. A Host
gets its configuration and then gets assigned a Filter to connect to and start sending data.

The port number of the FilterManager is fully configurable, however the default at this time is
4567.

Host (direction) Server Comment
[STARTCONFIG] ----------> Requests to start

receiving config
information

<---------- [OK|ERROR] If the server ok's the
request or not

[LASTMODIFIED] ----------> Asks when the config
was last modified
(used when checking
if the config has
changed)

<---------- [{lastmodified}|ERROR] Returns a long int time
since epoch eg,
123456789 To
indicate what format
this is in, I quote from
the Java 1.3 JDK API
"measured in
milliseconds since the
epoch"

[FILELIST] ----------> Asks the server for the

The i-scream Project

4

list of files that were
used to build the
config (used when
checking if the config
has changed)

<---------- [{filelist}|ERROR] Returns a semi-colon
separated list of
filenames
eg,a.conf;b.conf;c.conf

[FQDN] ----------> Asks the server to
send the FQDN (fully
qualified domain
name) of the
connecting host.

<---------- [{fqdn}|ERROR] Returns the FQDN of
the connected host, or
error if it can't be
looked up.

* LOOP START * This loop reads
configuration
properties from the
config

[{property}] ----------> Sends the name of a
property to be
retrieved from the
config file eg,
UDPUpdateTime

<---------- [{value}|ERROR] Returns the value of
the requested config
property eg, 120 If it is
unable to find the
requested property it
returns ERROR to
indicate that fact, but
communication still
proceeds.

* LOOP UNTIL * The loop continues
until the host sends
the following message

[ENDCONFIG] ----------> Indicates that the host
requires no more
config

* LOOP END * Communication
continues

<---------- [OK] Indicates that the
server is ready to
proceed

[FILTER] ----------> Asks the server to
send it the host
information of a filter
that it should connect
to

<---------- [{filter}|ERROR] Returns a semi-colon
separated list of
FQDN hostname,
UDP port number and
TCP port number that
a configured Filter is
running on and
assigned to the calling

Server/Host/Client Protocols

5

host eg,
raptor.ukc.ac.uk;
1234;5678 or ERROR
if none of configured
Filter's could be found.

[END] ----------> Indicates to the server
that the host has
finished an will
disconnect

<---------- [OK|ERROR] Indicates that the
server is either ok or
that it thought there
was an error

Host Heartbeat Protocol
When a host is configured after it has connected it should obtain a property TCPUpdateTime.
This indicates how often a host should send a "Heartbeat", which is a pro-active connection to
the servers Filter a host is using to indicate that it is still alive. This "Heartbeat" also allows a
host to see its configuration has changed and act accordingly. In a well-written host this
should just be a case of dropping out of a loop and heading back to the start (connecting to
the filter manager).

Host (direction) Server Comment
[HEARTBEAT] ----------> Starts the heartbeat

protocol off
<---------- [OK|ERROR] Indicates that the

server is ok or not
[CONFIG] ----------> Indicates that the host

wants to check its
config

<---------- [OK|ERROR] Indicates that the
server is ok or not

[{filelist}] ----------> Send a semi-colon
separated list of
filenames eg,
a.conf;b.conf;c.conf
This should be
identical to the one
received in the
connection protocol

<---------- [OK] Indicates that the
server is ok

[{lastmodified}] ----------> Returns a long int time
since epoch eg,
123456789 This
should be identical to
the one received in
the connection
protocol To indicate
what format this is in, I
quote from the Java
1.3 JDK API
"measured in
milliseconds since the
epoch"

<---------- [OK|ERROR] The server then
checks all the files in

The i-scream Project

6

the file list to see if
they have been
modified more
recently than the
lastmodified value. If
they HAVE that
indicates that the
configuration has
changed and the host
should re-configure,
thus it sends ERROR.
If the files remain
unchanged the server
will return OK to
indicate the host
should continue as
before.

[ENDHEARTBEAT] ----------> Indicates to the server
that the host has
finished an will
disconnect

<---------- [OK|ERROR] Indicates that the
server is either ok or
that it thought there
was an error

Host Data Protocol
The UDP data packets that are sent by the host contain simply XML data. For information on
the format of this data see the XML via UDP specification document which is also available
online at: http://www.i-scream.org.uk/cgi-bin/docs.cgi?doc=specification/xml_via_udp.txt

Client Control Protocol
The client control protocol channel is opened by the client and allows a variety of actions to
be carried out by the client at anytime. Unlike previous protocols, this is NOT sequential, all
of the requests can be carried out in any order. All client protocols are backwards compatible,
and the version in use is indicated by the protocol identifier.

There are three sections to this protocol.

1) Initialise (sent only at start)
2) Send command(s) - unlimited number in any order
3) Disconnect (sent only at end)

If at anytime the client sends something the server does not understand, an [ERROR] will be
sent.

All are indicated with <> brackets.

v1.0
Protocol identifier: "PROTOCOL 1.0" (without quotes)
Supported commands:

http://www.i-scream.org.uk/cgi-bin/docs.cgi?doc=specification/xml_via_udp.txt

Server/Host/Client Protocols

7

STARTCONFIG
STARTDATA
STOPDATA

Client (direction) Server Comment
<initialise>

<---------- [{protocol}] The server sends the
protocol identifier

[{name}] ----------> The client sends its
"name". This name is
used to identify the
type of client to the
system and obtain its
config eg, Conient

<---------- [OK] Indicates the server is
ok to proceed

<command #1> (allows client to obtain its configuration)
[STARTCONFIG] ----------> Tell the server we

want to start this
command

<---------- [OK] Indicates the server is
ok to proceed

* LOOP START * This loop reads
configuration
properties from the
config

[{config};{property}] ---------->
Sends the name of a
configuration and
property to be
retrieved from the
config file Clients can
obtain host
information eg,
Host.UDPUpdateTime
Otherwise it must
prefix requests with
"Client." All other
requests will be
ignored as if it was
unable to retrieve the
property

<---------- [{value}|ERROR] Returns the value of
the requested config
property eg, 120 If it is
unable to find the
requested property it
returns ERROR to
indicate that fact

* LOOP UNTIL * The loop continues
until the client sends
the following message

[ENDCONFIG] ----------> Indicates that the
client requires no
more config

* LOOP END * Communication
continues

<---------- [OK] Indicates that the

The i-scream Project

8

server is ready to
proceed

<command #2> (tells the server to start the data link)
[STARTDATA] ----------> Tell the server we

want to start this
command

<---------- [{portnumber}|ERROR] The server then sets
itself listening for a
connection on its data
link socket for this
client. It returns the
port no. that it is
listening on eg, 12367
If the data link is
already started the
server will return
ERROR

<---------- [OK] Indicates the client
has successfully
connected to the data
socket.

<command #3> (tells the server to stop the data link)
[STOPDATA] ----------> Tell the server we

want to start this
command. The server
then shuts down the
data link to the client

<---------- [OK|ERROR] Returns OK is the
server is ready to
proceed, or ERROR if
the data link was not
open in the first place.

<disconnect>
[DISCONNECT] ----------> Tells the server the

client wants to close
the control link

<---------- [OK] The last word from the
server, it will
disappear after this,
and close the data link
if required

v1.1
Protocol identifier: "PROTOCOL 1.1" (without quotes)
Supported commands:

SETHOSTLIST

Client (direction) Server Comment
<command #4> (indicates to the server which hosts the client wants data from)
[SETHOSTLIST] ----------> Tell the server we want to start this

command.
<---------- [OK|ERROR] The server will return an ERROR if

the data link is open, as a host list
must ONLY be set if the data link is
closed If the server is ok to
proceed with the command it says

Server/Host/Client Protocols

9

[OK]
[{hostlist}] ----------> This is a semi-colon separated list

of FQDN hostnames that the client
wishes to receive data from eg,
raptor.ukc.ac.uk;killigrew.ukc.ac.uk;
If the list is sent blank (or if no list is
set at all) then data from ALL hosts
will be sent to the client (this is the
default if no SETHOSTLIST is not
run by the client

<---------- [OK] Indicates the server is ok to
proceed and the host list has been
accepted

Client Data Protocol
Once the data link has been opened by the control link, the server will send XML formatted
data packets separated by the \n (newline) character. For information on the format of this
data see the XML via UDP specification document which is also available online at:
http://www.i-scream.org.uk/cgi-bin/docs.cgi?doc=specification/xml_via_udp.txt

http://www.i-scream.org.uk/cgi-bin/docs.cgi?doc=specification/xml_via_udp.txt

	Introduction
	Conventions
	Host Connection Protocol
	Host Heartbeat Protocol
	Host Data Protocol
	Client Control Protocol
	Client Data Protocol

